$K$ = $\frac{1}{2}mv^2$
$\frac{dK}{dt}$= $mv \frac{dv}{dt}$=$mv a_t$=$(ma_t)v$=$F_t v$
$dK$ = $F_t vdt$ = $F_t (vdt)$ = $\overrightarrow{F_t} .\overrightarrow{dr}$
$\triangle K$ = $W$all
$\triangle U$ = $-W$internal, conservative
If $\overrightarrow{F}$external=$0$ and $\overrightarrow{F}$internal, non-conservative=$0$
$\triangle K$ = $W$all = $W$internal, conservative ($\because$ $W$internal, non-conservative and $W$external = 0)
$\Rightarrow$ $\triangle K$ = $- \triangle U$
$\Rightarrow$ $K_f - K_i$ = $U_i - U_f$
$\Rightarrow$ $K_f + U_f$ = $K_i + U_i$
Thus, principal of conservation of energy holds true in the given conditions.
$W$all=$\triangle K$
$\Rightarrow$ $W$internal, conservative+$W$internal, non-conservative + $W$external = $K_f$ - $K_i$
$\Rightarrow$ ($U_i$ - $U_f$) + $W$internal, non-conservative + $W$external = $K_f$ - $K_i$
$\Rightarrow$ $W$internal, non-conservative + $W$external = ($K_f$ + $U_f$) - ($K_i$ + $U_i$)
$\Rightarrow$ $W$internal, non-conservative + $W$external = $E$total final - $E$total initial
$\Rightarrow$ if $W$internal, non-conservative= $0$, then $W$external = $\triangle E$total